1964 Cessna 150 Patroller

Performance and Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross weight</td>
<td>1600 lbs</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>Top Speed at sea level</td>
<td>125 mph</td>
</tr>
<tr>
<td>Cruise, 75% power at 7500 ft</td>
<td>122 mph</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Cruise, 75% Power at 7500 ft</td>
<td>760 mi</td>
</tr>
<tr>
<td>35.0 Gallons</td>
<td>6.2 hours</td>
</tr>
<tr>
<td></td>
<td>122 mph</td>
</tr>
<tr>
<td>Optimum Range at 10,000 ft</td>
<td>885 mi</td>
</tr>
<tr>
<td>35.0 Gallons</td>
<td>8.9 hours</td>
</tr>
<tr>
<td></td>
<td>99 mph</td>
</tr>
<tr>
<td>Rate of Climb at sea level</td>
<td>670 fpm</td>
</tr>
<tr>
<td>Service Ceiling</td>
<td>12650</td>
</tr>
<tr>
<td>Takeoff</td>
<td></td>
</tr>
<tr>
<td>Ground Run</td>
<td>735 ft</td>
</tr>
<tr>
<td>Total Distance over 50’ obstacle</td>
<td>1385 ft</td>
</tr>
<tr>
<td>Landing</td>
<td></td>
</tr>
<tr>
<td>Landing Roll</td>
<td>445 ft</td>
</tr>
<tr>
<td>Total Distance over 50’ obstacle</td>
<td>1075 ft</td>
</tr>
<tr>
<td>Empty Weight</td>
<td>1015 lbs</td>
</tr>
<tr>
<td>Baggage</td>
<td>120 lbs</td>
</tr>
<tr>
<td>Wing Loading</td>
<td>10 lb/sf</td>
</tr>
<tr>
<td>Power loading</td>
<td>16 lb/HP</td>
</tr>
<tr>
<td>Fuel Capacity</td>
<td>total 38 gal</td>
</tr>
<tr>
<td>Oil Capacity</td>
<td>6 US qts</td>
</tr>
<tr>
<td>Propeller</td>
<td>Fixed Pitch, metal, dia. 69 in</td>
</tr>
<tr>
<td>Power</td>
<td>Continental O-200 A Engine, 100 HP at 2750 RPM</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SECTION I OPERATING CHECKLIST

SECTION II DESCRIPTION AND OPERATING DETAILS

SECTION III OPERATING LIMITATIONS

SECTION IV CARE OF THE AIRPLANE

SECTION V OPERATIONAL DATA

ALPHABETICAL INDEX
Section I

Operating Check List

One of the first steps in obtaining the utmost performance, service, and flying enjoyment from your Cessna is to familiarize yourself with your airplane’s equipment, systems, and controls. This can best be done by reviewing this equipment while sitting in the airplane. Those items whose functions and operation are not obvious are covered in Section II.

Section I lists, in the Pilot’s Check List form, the steps necessary to operate your airplane efficiently and safely. It is not a checklist in its true form as it is considerably longer, but it does cover briefly all of the points that you would want to or should know concerning the information you need for a typical flight.

The flight and operation characteristics of your airplane are normal in all respects. There are no unconventional characteristics or operations that need to be mastered. All controls respond in the normal way within the entire range of operation. All airspeeds mentioned in Sections I and II are indicated airspeeds. Corresponding calibrated airspeeds may be obtained from the Airspeed Correction Table in Section V.

BEFORE ENTERING THE AIRPLANE

1. Make an exterior inspection in accordance with figure 1-1

BEFORE STARTING THE ENGINE

1. Seats and seat belts – Adjust and Lock
2. Brakes – Test and set
3. Master Switch – On
4. Fuel Valve Handle – On

STARTING THE ENGINE

1. Carburetor Heat – Cold
2. Mixture – Rich
3. Primer – As Required
4. Ignition switch – Both
5. Throttle – Open ¼ inch
6. Propeller Area – Clear
7. Starter – On

BEFORE TAKE-OFF

1. Throttle Setting – 1700 RPM
2. Engine Instruments – Within green arc and generator light out
3. Magnetos – Check (75 RPM maximum differential between magnetos
4. Carburetor Heat – Check operation
5. Flight Controls – check
6. Trim Tab – Takeoff
7. Cabin doors – latched
8. Flight Instruments and Radios – Set

TAKE-OFF

NORMAL TAKE-OFF

1. Wing flaps – Up
2. Carburetor Heat – Cold
3. Throttle – Full “Open”
4. Elevator Control – Lift nose wheel at 50 mph
5. Climb Speed – 72 MPH until all obstacles are cleared, then set up climb speed as shown in NORMAL CLimb paragraph

MAXIMUM PERFORMANCE TAKE-OFF

1. Wing Flaps – Up
2. Carburetor Heat – Cold
3. Brakes – Hold
4. Throttle – Full OPEN
5. Brakes – release
6. Elevator Control – Slightly tail low
7. Climb Speed – 52 MPH (with obstacles ahead)

CLIMB

NORMAL CLIMB

1. Air Speed – 75 to 80 MPH
2. Power – Full throttle
3. Mixture – Rich (unless engine is rough)

MAXIMUM PERFORMANCE CLIMB

1. Air Speed – 72 MPH
2. Power – Full throttle
3. Mixture – Rich (unless engine is rough)

CRUISING

1. Power – 2000 to 2750 RPM
2. Elevator Trim – Adjust
3. Mixture – Lean to maximum RPM

BEFORE LANDING

1. Mixture – Rich
2. Carburetor Heat – Apply full heat before closing throttle
3. Airspeed – 65 to 75 MPH
4. Wing Flaps -- As desired below 100 MPH
5. Airspeed – 60 to 70 MPH with flaps extended

AFTER LANDING

1. Wing Flaps – Up
2. Carburetor Heat – Cold

SECURE AIRCRAFT

1. Mixture – Idle Cut-off
2. All Switches – Off
3. Parking Brake – Set
4. Control Lock – Installed

NORMAL LANDING

1. Touch down – Main wheels first
2. Landing Roll – Lower nose wheel gently
3. Braking – Minimum required
Section II

Description and Operating Details

The following paragraphs describe the systems and equipment whose function and operation is not obvious when sitting in the airplane. This section also covers in somewhat greater detail some of the items listed in checklist form in Section I. Only those items of the checklist requiring further explanation will be found here.

All airspeeds mentioned in this section are indicated airspeeds. Corresponding calibrated airspeeds may be obtained from the Airspeed Correction Table in Section V.

FUEL SYSTEM (Patroller)

Fuel is supplied to the engine from two 19-gallon wing tanks. From these tanks, fuel flows by means of gravity through a fuel shutoff valve and fuel strainer to the carburetor. The total usable fuel in all flight conditions 35 gallons.

For fuel system service information refer to Lubrication and Servicing Procedures in Section 4

FUEL STRAINER DRAIN

Refer to fuel strainer Servicing Procedure, Section 4

FUEL QUANTITY DATA (U. S. GALLONS)

<table>
<thead>
<tr>
<th>TANKS</th>
<th>USABLE FUEL ALL FLIGHT CONDITIONS</th>
<th>UNUSABLE FUEL</th>
<th>TOTAL FUEL VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO WING 19 GAL EACH</td>
<td>35</td>
<td>3.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

fig 2-1

page 2-1

page 2-2
ELECTRICAL SYSTEM

Electrical energy is supplied by a 14-volt, direct-current system, powered by an engine-driven 20-amp generator. A 12-volt storage battery is located on the right forward side of the firewall, just inside the cowl access door. The master switch controls all electrical circuits except the clock and the ignition system.

FUSES AND CIRCUIT BREAKERS

Fuses protect many of the electrical circuits in your airplane. The circuits controlled by each fuse are indicated above each fuse retainer. The clock fuse is located adjacent to the battery. Fuse capacity is indicated on each fuse retainer cap. Fuses are removed by pressing the fuse retainers inward and rotating them counterclockwise until they disengage. The faulty fuse may then be lifted out and replaced. Spare fuses are held in a clip on the inside of the map compartment door.

The fuel quantity indicators, stall warning transmitter and warning horn system, and optional turn-and-bank indicator circuits are protected by an automatically – reset circuit breaker which provides intermittent emergency operation of these devices in case of a faulty circuit. In addition to the fuse in the instrument panel, the cigar lighter is protected by a manually-reset type circuit breaker mounted on the back of the lighter receptacle.

LANDING LIGHTS

A three position, push-pull type switch controls the optional landing lights mounted in the leading edge of the left wing. To turn one lamp on for taxiing, pull the switch out to the first stop. To turn both lamps on for landing, pull the switch out to the second stop.

CABIN HEATING AND VENTILATING SYSTEM

For heated ventilation air, pull the cabin heat know out the desired amount. Additional ventilating air is provided by pulling out the ventilators located in the upper corners of the windshield.

PARKING BRAKE SYSTEM

To set the parking brake, apply toe pressure to the pedals, pull out on the parking brake knob, then release toe pressure. To release the parking brake, push the knob in, then apply and release toe pressure.

STARTING ENGINE

Ordinarily the engine starts easily with one or two strokes of primer in warm temperatures to six strokes in cold weather, with the throttle open approximately ¼ inch. In extremely cold temperatures, it may be necessary to continue to priming while cranking.

Weak intermittent explosions followed by puffs of black smoke from the exhaust stack indicates overpriming or flooding. Excess fuel can be cleaned from the combustion chambers by the following procedure: Set the mixture control in full lean position, throttle full open, and crank the engine trough several revolutions with the starter. Repeat the starting procedure without any additional priming.

If the engine is underprimed (most likely in cold weather with a cold engine) it will not fire at all, and additional priming will be necessary. As soon as the cylinders begin to fire, open the throttle slightly to keep it running.

After starting, if the oil gauge does not begin to show pressure within 30 seconds in the summertime and about twice that long in very cold weather, stop engine and investigate. Lack of oil pressure can cause serious engine damage. After starting, avoid the use of carburetor heat unless icing conditions prevail.
TAXIING

When taxiing it is important that speed and use of brakes be held to a minimum and that all controls be utilized. (see figure 2-2) to maintain directional control and balance.

Taxiing over loose gravel or cinders should be done at low engine speed to avoid abrasion and stone damage to the propeller tips. Full throttle run-ups over loose gravel are especially harmful to propeller tips. When takeoffs must be made over a gravel surface, it is very important that the throttle be advanced slowly. This allows the airplane to start rolling before the high RPM is developed, and the gravel will be blown back of the propeller rather than pulled into it. When unavoidable small dents appear in the propeller, blade, they should be immediately corrected as described in Section 4.

BEFORE TAKEOFF

WARM-UP

Most of the warm up will have been conducted during the taxi, and additional warm up before take-off should be restricted to the checks outlined in Section II. Since the engine is closely cowled for efficient in-flight cooling, precautions should be taken to avoid overheating on the ground.

MAGNETO CHECK

The magneto check should be made at 1700 RPM as follows: Move the ignition switch first to "R" position and note RPM. Then move switch back to "BOTH" to clear the other set of plugs. Then move switch to "L" position and note RPM. The difference between the two magnetos operated individually should not be more than 75 RPM.

HIGH RPM MAGNETO CHECKS

TAXIING DIAGRAM

Strong quartering tailwinds require caution. Avoid sudden bursts of the throttle and sharp braking when the airplane is in this attitude. Use the steerable nose-wheel and rudder to maintain direction.
If there is a doubt concerning the operation of the ignition system, RPM checks at higher engine speeds will usually confirm whether a deficiency exists. If a full throttle run up is necessary, the engine should be run smoothly and turn approximately 2375 to 2475 RPM with carburetor heat off.

An absence of RPM drop may be an indication of faulty grounding of one side of the ignition system or should be cause for suspicion that the magneto has been "bumped up" and is set in advance of the setting specified.

TAKE-OFF

POWER CHECKS

Since the use of full throttle is not recommended in the static run-up, it is important to check full-throttle engine operation early in the take-off run. Any signs of rough engine operation or sluggish engine acceleration is good cause for discontinuing the take-off. If this occurs, you are justified in making a thorough full-throttle, static run-up before another take-off is attempted.

Prior to take-off from fields above 5000 ft. elevation, the mixture should be leaned to give maximum RPM in a full throttle, static run-up.

FLAP SETTINGS

Normal and obstacle clearance take-offs are performed with flaps up. The use of 10° flaps will shorten the ground run approximately 10%, but this advantage is lost in the climb to a 50-ft. obstacle. Therefore, the use of 10° flaps is reserved for minimum ground runs, or for take-offs from soft or rough fields with no obstacles ahead.

If 10° flaps are used in ground runs, it is preferable to leave them extended rather than retract them in the climb to the obstacle. The exception to this rule would be in a high altitude takeoff in hot weather where would be marginal with the 10° flaps (1st notch)

Flap deflections of 10° flaps and 10° flaps are not recommended at any time for takeoff.

PERFORMANCE CHARTS

Consult the take-off chart in Section 5 for take-off distances under various gross weight, altitude, and headwind conditions.

CROSSWIND TAKE-OFFS

Take-offs into strong crosswinds normal are performed with the minimum flap setting necessary for the field length, to minimize the drift angle immediately after take-off. The airplane is accelerated to a speed slightly higher than normal, then pull off abruptly to prevent possible settling back to the runway while drifting. When clear of the ground, make a coordinated turn into the wind to correct for drift.

CLIMB

For detailed data, see the Climb Performance Chart in Section 5

CLIMB SPEEDS

Normal climbs are conducted at 75 MPH to 80 MPH with flaps up and full throttle for best engine cooling. The mixture should be full rich unless engine is rough due to too rich a mixture. The best rate-of-climb speeds range from 72 MPH at sea level to 66 MPH at 10,000 ft. In an obstruction dictates the use of a steep climb angle, the best angle-of-climb speed should be used with flaps up and full throttle. These speeds vary from 52 MPH and sea level to 60 MPH at 10,000 ft.
NOTE
Steep climbs at these low speeds should be of short duration to allow improved engine cooling.

CRUISE

Normal cruising is done at 65% to 75% of METO power. The settings required to obtain these powers at various altitudes and outside temperatures can be determined by using your Cessna Power Computer.

Cruising can be done most efficiently at high altitude because of lower airplane drag due to lower air density. This is illustrated in the following table for 70% power:

<table>
<thead>
<tr>
<th>ALTITUDE</th>
<th>RPM</th>
<th>TRUE A/S (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level</td>
<td>2430 *</td>
<td>111</td>
</tr>
<tr>
<td>5,000 ft</td>
<td>2550 *</td>
<td>116</td>
</tr>
<tr>
<td>9,000 ft</td>
<td>full throttle</td>
<td>120</td>
</tr>
</tbody>
</table>

For detailed cruise performance, refer to the Cruise Performance chart in Section 5.

STALLS

The stall characteristics are conventional for the flaps up and flaps down condition. Slight elevator buffeting may occur just before the stall with flaps down.

LANDING

Normal landings are made power off with any flap setting. Approach glides are normally made at 65 to 75 MPH with flaps up, or 60 to 70 MPH with flaps down, depending upon the turbulence of the air.

SHORT FIELD LANDINGS

For a short field landing, make a power off approach at 8 MPH with flaps 40° (fourth notch) and land on the main wheels first. Immediately after touchdown, lower the nose gear to the ground and apply heavy braking as required. Raising the flaps after landing will provide more efficient braking.

CROSSWIND LANDINGS

When landing is a strong crosswind, use the minimum flap setting required for the field length. Use a wing low, crab, or combination method of drift correction and land in a nearly level attitude. Hold a straight course with the steerable nosewheel and occasional braking if necessary.

COLD WEATHER OPERATION

The stalling speeds are shown in Section 5 for forward c.g., full weight conditions. The are presented as calibrated airspeeds because indicated airspeeds are inaccurate near the stall. Other loadings result in slower stalling speeds. The stall warning horn produces a steady signal 5 to 10 MPH before the actual stall is reached and remains on until the airplane flight attitude is changed.
Prior to starting on cold mornings, it is advisable to pull the propeller through several times by hand to "break loose" or "limber" the oil, thus conserving battery energy. In extremely cold (-20°F) weather the use of an external preheater is recommended whenever possible to reduce wear and abuse to the engine and electrical system. Cold weather starting procedures are as follows:

With preheat

1. Clear propeller
2. Master Switch -- On
3. With magneto switch "OFF" and throttle closed, prime the engine four to ten strokes as the engine is being turned over

 NOTE

 Use heavy strokes of primer for best atomization of fuel. After priming, push primer all the way in and turn to locked position to avoid possibility of engine drawing fuel through the primer.
4. Turn magneto switch to "Both"
5. Open throttle to 1/4" and engage starter

Without preheat

1. Prime the engine 8 to 10 heavy strokes while the propeller is being turn by hand.
2. Clear propeller
3. Pull the master switch "On"
4. Turn magneto switch to "Both"
5. Open throttle 1/4"
6. Pull carburetor air heat knob to full on
7. Engage the starter and continue to prime engine until it is running smoothly
8. Keep carburetor heat on until engine has warmed up.

NOTE

If the engine does not start the first time it is probable that the spar plugs have been frosted over. Preheat must be used before another start is attempted.

During cold weather operation, no indication will be apparent on the oil temperature gauge prior to take of if outside air temperatures are very cold. After a suitable warm-up period (2 to 5 minutes at 1000 RPM) accelerate the engine several times to higher engine RPM. If the engine accelerates smoothly and the oil pressure remains normal and steady, the airplane is ready for take-off.

When operating sub-zero temperature, avoid using partial carburetor heat. Partial heat may increase the carburetor air temperature to the 32° to 80°F range, where icing is critical under certain atmospheric conditions.

An optional winterization kit is available for use when operating to temperatures below 20°F.
Section III

OPERATING LIMITATIONS

OPERATIONS AUTHORIZED

Your Cessna 150, with standard equipment as certified under FAA Type Certificate is approved for day and night operation under VFR.

Additional optional equipment is available to increase its utility and to make it authorized under IFR day and night.

Your airplane must be operated in accordance with all FAA approved markings placards and checklists in the airplane. If there is any information in this section, which contradicts the FAA approved markings, placards and checklists, it is to be disregarded.

MANEUVERS - - UTILITY CATEGORY

This airplane is not designed for purely aerobatic flight. However, in the acquisition of various certificates such as commercial pilot, instrument pilot and flight instructor, certain maneuvers are required by the FAA. All of these maneuvers are permitted in the Cessna 150. In connection with the foregoing, the following gross weights and flight load factors apply, with recommended entry speed for maneuvers as shown.

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Recommended Entry Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chandelles</td>
<td>109 MPH (95 knots)</td>
</tr>
<tr>
<td>Lazy Eights</td>
<td>109 MPH (95 knots)</td>
</tr>
<tr>
<td>Steep Turns</td>
<td>109 MPH (95 knots)</td>
</tr>
<tr>
<td>Spins</td>
<td>Use slow Deceleration</td>
</tr>
<tr>
<td>Stalls</td>
<td>Use slow Deceleration</td>
</tr>
</tbody>
</table>

During prolonged spins the aircraft engine may stop; however, spin recovery is not adversely affected by engine stoppage.

Aerobatics that may impose high inverted loads should not be attempted. The important thing to bear in mind in-flight maneuvers is that the Cessna 150 is clean in aerodynamic design and will build up speed quickly with the nose down. Proper speed control is an essential requirement for execution of any maneuver, and care should always be exercised to avoid excessive speed which, in turn, can impose excessive loads. In the execution of all maneuvers, avoid abrupt use of controls.

AIRSPEED LIMITATIONS

The following are the certificated calibrated airspeed limits for the Cessna 150:

- Maximum (Glide or dive, smooth air) 162 MPH (red line)
- Caution Range 120-162 MPH (yellow arc)
- Normal Range 56-120 MPH (green arc)
- Flap Operating Range 49-100 MPH (white arc)
- Maneuvering Speed 109 MPH

* The maximum speed at which you can use abrupt control travel without exceeding the design load factor

ENGINE OPERATION LIMITATIONS

Power and Speed 100 BHP at 2750 RPM
ENGINE INSTRUMENT MARKINGS

OIL TEMPERATURE GAUGE
- Normal Operating Range: Green Arc
- Maximum Allowable: Red Line

OIL PRESSURE GAUGE
- Minimum Idling: 10 psi (red line)
- Normal Operating Range: 30 - 50 psi
- Maximum: 100 psi (red line)

FUEL QUANTITY INDICATORS
- Empty: 1.75 gallons (unusable each tank) E (red line)

TACHOMETER
- Normal Operating Range:
 - At sea level: 2000 - 2550 (inner green arch)
 - At 5000 feet: 2000 - 2650 (middle green arch)
 - At 10,000 feet: 2000 - 2750 (outer green arch)
- Maximum Allowable: 2750 (red line)

WEIGHT AND BALANCE

The following information will enable you to operate your Cessna 150 within the prescribed weight and center of gravity limitations.

To figure the weight and balance for your particular airplane, use the Sample Problem, Loading Graph, and Center of Gravity Moment Envelope as follows:

Take the licensed Empty Weight and Moment/1000 from the Weight and Balance Data Sheet, plus any changes noted on forms FAA-337 carried in your airplane, and write them down in the proper columns. Using the Loading Graph, determine the moment/1000 of each item to be carried. Total the weights and moments/1000 and use the Center of Gravity Moment Envelope to determine whether the point falls within the envelope and if the loading is acceptable.

NOTE: Normally, full oil may be assumed for all flights.
Section IV
CARE OF THE AIRPLANE

If your airplane is to retain that new plane performance, stamina, and dependability, certain inspection and maintenance requirements must be followed. It is always wise to follow a planned schedule of lubrication and maintenance based on the climatic and flying conditions encountered in your locality.

Keep in touch with your Cessna dealer, and take advantage of his knowledge and experience. He knows your airplane and how to maintain it. He will remind you when lubrications and oil changes are necessary and about outer seasonal and periodic services.

GROUND HANDLING

The airplane is most easily and safely maneuvered by hand with a tow-bar attached to the nose wheel.

NOTE
When using the tow-bar, never exceed the turning angle of 30° either side of center, or damage to the gear will result.

MOORING YOUR AIRPLANE

Proper tie-down is the best precaution against damage to your parked airplane by gusty or strong winds.

To tied down your airplane securely, proceed as follows:

1. Set parking brake and install control wheel lock
2. Install a surface control lock between each aileron and flap
3. Tie sufficiently strong ropes or chains (700 pounds tensile strength) to wing, and tail tie-down fittings and secure each rope to ramp tie-down
4. Install a surface control lock over the fin and rudder
5. Install a pitot tube cover
6. Tie a rope to an exposed portion of the engine mount and secure the opposite end to a ramp tie-down

WINDSHIELD - - WINDOWS

The plastic windshield and windows should be kept clean and waxed at all times. To prevent scratches and crazing, wash them carefully with plenty of soap and water, using the palm of the hand to feel and dislodge dirt and mud. A soft cloth, chamois or sponge may be used, but only to carry water to the surface. Rinse thoroughly, then dry with a clean moist chamois. Rubbing the surface of the plastic with a dry cloth builds up an electrostatic charge so that it attracts dust particles in the air. Wiping with a moist chamois will remove both the dust and this charge.

Remove oil and grease with a cloth moistened with kerosene. Never use gasoline, benzine, alcohol, acetone, carbon tetrachloride, fire extinguisher or anti-ice fluid, lacquer thinner or glass cleaner. These materials will soften the plastic and may cause it to craze.

After removing dirt and grease, if the surface is not badly scratched, it should be waxed with a good grade of commercial wax. The wax will fill in minor scratches and help prevent further scratching. Apply a thin even coat of was and bring it to a high polish by rubbing lightly with a clean, dry, soft flannel cloth. Do not use a power buffer; the heat generated by the buffing pad may soften the plastic.

Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated. Canvas covers may scratch the plastic surface.
PAINTED SURFACES

The painted surfaces of your new Cessna require an initial curing period which may be as long as 90 days after the finish is applied. During this curing period some precautions should be taken to avoid damaging the finish or interfering with the curing process. The finish should be cleaned only by washing with clean water and mild soap, followed by a rinse with water and drying with cloths or a chamois. Do not use polish or wax, which would exclude air from the surface, during this 90-day curing period. Do not rub or buff the finish and avoid flying through rain, sleet or hail.

Once the finish has cured completely, it may be waxed with a good automotive wax. A heavier coating of wax on the leading edges of the wings and tail and on the engine nose cap and propeller spinner will help reduce the abrasion encountered in these areas.

ALUMINUM SURFACES

The clad aluminum surfaces of your Cessna require only a minimum of care to keep them bright and clean. The airplane may be washed with clear water to remove dirt; oil and grease may be removed with gasoline, naphtha, carbon tetrachloride or other non-alkaline solvents. Dulled aluminum surfaces may be cleaned effectively with an aircraft aluminum polish.

After cleaning and periodically thereafter, waxing with a good automotive wax will preserve the bright appearance and retard corrosion. Regular waxing is especially recommended for airplanes operated in salt water areas as a protection against corrosion.

PROPELLER CARE

Preflight inspection of propeller blades for nicks, and wiping them occasionally with an oily cloth to clean off grass and bug stains will assure long, trouble-free service. It is vital that small nicks on the propellers, particularly near the tips and on the leading edges, are dressed out as soon as possible since these nicks produce stress concentrations, and if ignored, may result in cracks. Never use an alkaline cleaner on the blades. Remove grass and dirt with carbon tetrachloride or Stoddard solvent.

INTERIOR CARE

To remove dust and loose dirt from the upholstery, headliner, and carpet, clean the interior regularly with a vacuum cleaner.

Blot up any spilled liquid promptly, with cleansing tissue or rags. Don't pat the spot; press the blotting material firmly and hold it for several seconds. Continue blotting until no more liquid is taken up. Scrape off sticky materials with a dull knife, then spot-clean the area.

Oily spots may be cleaned with household spot removers used sparingly. Before using any solvent, read the instructions on the container and test it on an obscure place on the fabric to be cleaned. Never saturate the fabric with a volatile solvent; it may damage the padding and backing materials.

Soiled upholstery and carpet may be cleaned with foam-type detergent, and used according to the manufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner.
The plastic trim, instrument panel and control knobs need only be wiped off with a damp cloth. Oil and grease on the control wheel and control knobs can be removed with a cloth moistened with kerosene. Volatile solvents, such as mentioned in paragraphs on care of the windshield, must never be used since they soften the craze the plastic.

INSPECTION SERVICE AND INSPECTION PERIODS

With your airplane you will receive an Owner's Service Policy. Coupons attached to the policy entitle you to an initial inspection and the first 100-hour inspection at no charge. If you take delivery from your Dealer, he will perform the initial inspection before delivery of the airplane to you. If you pick up the airplane at the factory, plan to take it to your Dealer reasonably soon after you take delivery on it. This will permit him to check it over and to make any minor adjustments that may appear necessary.

Also, plan an inspection by your Dealer at 100 hours or 90 days, which ever comes first. This inspection also is performed by your Dealer for you at no charge. While these important inspections will be performed for you by any Cessna Dealer, in most cases you will prefer to have the Dealer from whom you purchased the airplane accomplish this work.

Civil Air Regulations required that all airplanes have a periodic (annual) inspection as prescribed by the administrator, and performed a person designated by the administrator. In addition, 100-hour periodic inspections made by an "appropriately-rated mechanic" are required if the airplane is flown for hire. The Cessna Aircraft Company recommends the 100-hour periodic inspection for your airplane. The procedure for this 100-hour inspection has been carefully worked out by the factory and is followed by the Cessna Dealer Organization. The complete familiarity of the Cessna Dealer Organization with Cessna equipment and factory-approved procedures provides the highest type of service possible at lower cost.

AIRPLANE FILE

There are miscellaneous data, information and licenses that are a part of the airplane file. The following is a checklist for that file. In addition, a periodic check should be made of the latest Civil Air Regulations in insure that all data requirements are met.

1) To be displayed in the airplane at all times:
 a) Aircraft Airworthiness Certificate (Form FAA-1362)
 b) Aircraft Registration Certificate (Form FAA-500A)
 c) Airplane Radio Station License (Form FCC-404, if transmitter installed)

2) To be carried in the airplane at all times
 a) Weight and Balance, and associated papers (latest copy of the Repair and Alteration Form, FAA-337 if applicable)
 b) Airplane Equipment List

3) To be made available upon request:
 a) Airplane Log Book
 b) Engine Log Book

LUBRICATION AND SERVICING PROCEDURES

Specific servicing information is provided here for items requiring daily attention. A Service Frequency checklist is included to inform the pilot when to have other items checked and serviced.

DAILY

Fuel Tank Filler
Service after each flight with 80/87 minimum grade fuel. The capacity of each wing tank is 19 gallons for optional patroller tanks

Fuel Strainer
On the first flight of the day and after each refueling, drain for about four seconds, to clear fuel strainer of possible water and sediment. Turn the drain knob, then check that strainer drain is close after draining.
Oil Filler
When preflight check shows low oil level, service with aviation grade engine oil: SAE 20 below 40ºF and SAE 40 above 40ºF. Your Cessna was delivered from the factory with straight mineral oil (non-detergent) and should be operated with straight mineral oil for the first 25 hours. The use of mineral oil during the 25-hour break-in period will help seat the piston rings and will result in less oil consumption. After the first 25 hours, either mineral oil or detergent oil may be used. If a detergent oil is used, it must conform to Continental Motors Corporation Specification MHS-24. Your Cessna Dealer can supply an approved brand.

Oil Dipstick
Check oil level before each flight. Do not operate on less than 4 quarts and fill if an extended flight is planned. The oil capacity of each engine is 7 quarts (optional oil filter has been installed)

SERVICING INTERVALS CHECKLIST

EACH 25 HOURS
- **Battery**: Check and Service
- **Engine Oil**: Change
- **Engine Oil Screen**: Clean
- **Induction Air Filter**: Clean or Replace
- **Nose Gear Torque Links**: Lubricate

EACH 50 HOURS
- **Engine Oil Filter**: Change

EACH 100 HOURS
- **Brake Master Cylinders**: Check and Fill
- **Gyro Instrument Air Filters**: Replace. Replace sooner if erratic or sluggish responses are noted with normal suction gauge readings.
- **Shimmy Dampener**: Check and Fill
- **Suction Relief Valve Inlet Screen**: Check inlet screen for dirt or obstruction
- **Fuel Tank Sump Drains**: Drain water and sediment
- **Fuel Line Drain Plug**: Drain water and sediment
- **Vacuum System Oil Separator**: Clean

EACH 500 HOURS
- **Wheel Bearings**: Lubricate. Lubricate at first 100 hours and at 500 hours thereafter

page 4-7

page 4-8
Section V

OPERATIONAL DATA

The operational data shown on the following pages are compiled from actual tests with airplane and engine in good condition, and using average piloting technique and best power mixture. You will find this data a valuable aid when planning your flights. However, inasmuch as the number of variables included precludes great accuracy, an ample fuel reserve should be provided. The range performance show makes no allowance for wind, navigation error, pilot technique, warm-up, take-off, climb etc., which may different on each flight you make. All of these factors must be considered when estimating fuel reserve.

To realize the maximum usefulness from your Cessna 150, you should take advantage of its high cruising speeds. However, if range is of primary importance, it may pay you to fly at a low cruising RPM thereby increasing your range and allowing you to make the trip non-sop with ample fuel reserve. The range table on page 6-3 should be used to solve flight-planning problems of this nature.

In the table (figure 5-4) range and endurance are given for lean mixture from 2500 feet to 12,500 feet. All figures are based on zero wind, 35 gallons of fuel for cruise, McCauley 1A100/MCM6950 propeller, 1600 pounds gross weight, and standard atmospheric conditions. Mixture is leaned to maximum RPM. Allowances for fuel reserve, headwinds, takeoffs and climb, and variation in mixture leaning technique should be made as no allowances are shown on the chart. Other indeterminate variables such as carburetor metering characteristics, engine and propeller conditions, and turbulence of the atmosphere may account for variations of 10% or more in maximum range.

AIRSTREAM CORRECTION TABLE

| FLAPS UP |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IAS | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
| CAS | 51 | 57 | 65 | 73 | 82 | 91 | 100 | 109 | 118 | 127 | 136 |

| FLAPS DOWN |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IAS | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
| CAS | 49 | 55 | 63 | 72 | 81 | 89 | 98 |

STALLING SPEEDS

Power off, (mph)

<table>
<thead>
<tr>
<th>Gross Weight 1600 lbs</th>
<th>ANGLE OF BANK</th>
<th>0º</th>
<th>20º</th>
<th>40º</th>
<th>60º</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaps 0º</td>
<td>55</td>
<td>57</td>
<td>63</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Flaps 20º</td>
<td>49</td>
<td>51</td>
<td>56</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Flaps 40º</td>
<td>48</td>
<td>49</td>
<td>54</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>
CRUISE PERFORMANCE
(WITH LEAN MIXTURE)

NOTE: Maximum performance cruise is limited to 75% power

<table>
<thead>
<tr>
<th>ALTITUDE</th>
<th>RPM</th>
<th>%BHP</th>
<th>TAS MPH</th>
<th>GAL/HR</th>
<th>* END. (HOURS)</th>
<th>* RANGE (MILES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level</td>
<td>59</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>55.5</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>52</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>48.5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>45</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,000</td>
<td>41.5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td>38</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>34.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td>31</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000</td>
<td>27.5</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,000</td>
<td>20.5</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td>17</td>
<td>-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,000</td>
<td>13.5</td>
<td>-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,000</td>
<td>10</td>
<td>-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,000</td>
<td>6.5</td>
<td>-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,000</td>
<td>3</td>
<td>-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,000</td>
<td>-0.5</td>
<td>-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,000</td>
<td>-4</td>
<td>-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19,000</td>
<td>-7.5</td>
<td>-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,000</td>
<td>-11</td>
<td>-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Temperatures
ALPHABETICAL INDEX

A
After landing, 1-4
Airplane
before entering, 1-1
distance table, 5-3
ground handling, 4-1
mooring, 4-1
secure, 1-4
Airspeed correction table, 5-2
Airspeed limitations, 3-2
Aluminum surfaces, 4-3
Authorized operations, 3-1
Baggage capacity, i
Before entering airplane, 1-1
Before landing, 1-3
Before starting engine, 1-1
Before takeoff, 1-2, 2-6
Brake system, parking 2-4
Cabin heating and ventilating system, 2-4
Capacity
baggage, i
cabin, 2-4
care
exterior, 4-2
interior, 4-3
propeller, 4-3
Center of gravity moment
envelope, 3-6
Checklist, servicing intervals, 4-7, 4-8
Climb, 1-3
maximum performance, 1-3
normal, 1-3
speeds, 2-8
Cold weather operation, 2-10
Correction Table, airspeed, 5-2
Cruise performance table, 5-4
Cruising, 1-3
Diagram, exterior inspection, iv
Dimensions, principal, ii
Distance table
landing, 5-3
takeoff, 5-3
Electrical system, 2-3
fuses and circuit breakers, 2-3
generator warning light, 2-3
Empty weight, i
Engine,
before starting, 1-1
instrument markings, 3-3
operation limitations, 3-2
primer, 2-2
starting, 1-2
Exterior care, 4-2
Exterior Inspection, iv
File, airplane, 4-5
Fuel System, 2-1
capacity, i
carburetor, 2-2
primmer, 2-2
quantity, 2-1
quantity indicators, 3-3
schematic, 2-2
shutoff valve, 2-2
strainer, 2-2, 4-6
tank fillers, 2-7
Flap Settings, 2-7
Fuses and Circuit Breakers, 2-3
Generator warning light, 2-3
Gross weight, i
Ground handling, 4-1
Heating and ventilation system, cabin, 2-4
Indicator, fuel quantity, 3-3
Inspection diagram, exterior, iv
Inspection service and inspection periods, 4-4
Instrument markings, engine, 3-3
Interior care, 4-3
Landing, i, 2-9
after, 1-4
before, 1-3
distance table, 6-2
lights, 2-3
normal, 1-3
short field, 2-9
Light, landing, 2-3
Limitations,
airspeed, 3-2
gine operation, 3-2
Loading graph, 3-5
Loading problem, sample, 3-4
Lubrications and servicing procedures, 4-6
Magneto check, 2-6
Maneuvers, utility category, 3-1
Markings, instrument, 3-3
Maximum performance climb, 1-3
Maximum performance takeoff, 1-2
Mooring your airplane, 4-1
Normal climb, 1-3
Normal landing, 1-3
Normal takeoff, 1-2
Oil capacity, i
Dipstick, 4-7
Filler, 4-6
Temperature gauge, 3-3
Pressure gauge, 3-3
Operation, cold weather, 2-10
Operations, authorized, 3-1
Owner follow-up system, 4-5
Performance - specifications, i
Power checks, 2-7
Power, i
Power loading, i
Primer, engine, 2-2
Principal dimensions, ii
Propeller care, 4-3

Q
Quantity data, fuel, 2-1
Quantity indicators, fuel, 3-3

R
Range, i, 5-4
Rate of climb, i

S
Sample loading problem, 3-4
Secure aircraft, 1-4
Service ceiling, i
Servicing and lubrication, 4-6
Servicing intervals, check list, 4-7, 4-8
servicing requirements table , after index
Shut-off valve, fuel, 2-2
Specifications, performance, i
Speed, i
Stalls, 2-9
 speed chart, 5-2
Starting engine, 1-2, 2-4
 before, 1-1
Strainer, fuel, 2-2
System
 cabin heating and ventilating, 2-4
 electrical, 2-3
 fuel, 2-1
 owner follow-up, 4-5
parking brake, 2-4

T
Tachometer, 3-3
Takeoff, i, 1-2, 2-7
 before takeoff, 1-2, 2-6
crosswind, 2-8
distance table, 5-3
maximum performance, 1-2
normal, 1-2
Taxiing, 2-4
diagram, 2-5

U
Utility category, maneuvers, 3-1

V
Valve, fuel shutoff, 2-2

W
Weight,
 empty, i
gross, i
Weight and balance, 3-3
 center of gravity moment
 envelope, 3-6
 loading graph, 3-6-5
 sample loading problem, 3-4
Windshield - windows, 4-2
Wing loading, i
Servicing Requirements

FUEL

Aviation Grade 80/87 Minimum, grade
Capacity, each 19 gallons capacity of sump 7 qts with oil filter
do not operate with less than 4 qts

ENGINE OIL

aviation grade SAE 20 below 40º
SAE 24 above 40º

HYDRAULIC FLUID

MIL - H - 5606 Hydraulic fluid

TIRE PRESSURE

Nose gear 30 psi
Main gear 30 psi (5:00 x 5 tire)
21 psi (6:00 x 6 tire, optional)