Flight Manual

P92 Echo & P92 Echo/100

(ROTAx 912UL 81Hp or ROTAx 912ULS 100Hp engine)

MANUFACTURER: COSTRUZIONI AERONAUTICHE TECNAM S.r.l.
AIRCRAFT TYPE: P92 Echo & P92 Echo/100
SERIAL NUMBER: ..
MANUFACTURING DATE: ..

Warning

This manual is valid for the P92 Echo with either Rotax 912 81 Hp engine or Rotax 912S 100 Hp engine (P92 Echo/100).
For evident safety reasons and upon reading this manual for the first time, it is necessary to underline (perhaps also highlight with a colored marker) any differences in charts and tables as applicable to personal aircraft.

The Flight Manual must always be kept on board the aircraft. The aircraft described herein is to be operated in accordance with procedures and limitations described in this Flight Manual.

October '98

i-1
Record of Revisions

All revisions to the current Manual, except for actual weighing data, must be recorded in the following table and, in case of approved sections, must be endorsed by the Responsible Airworthiness Authority.

New text or amendments to revised pages shall be clearly marked by a vertical black line on the left hand margin, with revision N° and date indicated on left side of page.

<table>
<thead>
<tr>
<th>Rev N°</th>
<th>Affected Sections</th>
<th>Affected Pages</th>
<th>Date</th>
<th>Date inserted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

General Section 1
Limitations Section 2
Emergency procedures Section 3
Normal procedures Section 4
Performance Section 5
Weight and balance Section 6
Systems description Section 7
Ground handling and servicing Section 8
Section 1

General

Table of Contents

INTRODUCTION .. 5
WARNINGS - CAUTIONS - NOTES .. 5
THREE VIEW DRAWING ... 6
DESCRIPTIVE DATA ... 7
CONTROL SURFACES TRAVEL LIMITS ... 7
ENGINE ... 8
PROPPELLER ... 8
FUEL ... 9
OIL .. 9
COOLING ... 9
WEIGHTS ... 10
SPECIFIC LOADINGS .. 10
ABBREVIATIONS AND TERMINOLOGY ... 11
UNIT CONVERSION FACTORS .. 14
Introduction

The **P92 Echo** is a twin seat single engine aircraft with a strut-braced rectangular high wing, fixed main landing gear and steerable nose wheel.

This Flight Manual has been prepared to provide pilots and instructors with information for the safe and efficient operation of this aircraft.

This Flight Manual contains 8 sections. Section 1 provides basic data and information of general interest in addition to definitions and explanations of symbols, abbreviations and terminology commonly used.

Warnings - Cautions - Notes

The following definitions apply to warnings, cautions and notes used in the Flight Manual.

WARNING

means that the non-observation of the corresponding procedure leads to an immediate or important degradation of the flight safety.

CAUTION

means that the non-observation of the corresponding procedure leads to a minor or to a more or less long term degradation of the flight safety.

NOTE

draws the attention to any special item not directly related to safety but which is important or unusual.
Dimensions shown refer to aircraft weight of 450 kg and normal operating tire pressure.
- Propeller clearance 360mm
- Propeller clearance with deflated front tire and compressed shock absorber 142mm
- Minimum ground steering radius 5.5m
Descriptive Data (P92 Echo & P92 Echo/100)

Wing
- Wing span: 9.6 m
- Wing chord: 1.4 m
- Wing surface: 13.2 m²
- Wing loading: 34.1 kg/m²
- Aspect ratio: 6.2
- Taper ratio: 1.0
- Dihedral: 1.5°

Fuselage
- Overall length: 6.3 m
- Overall width: 1.1 m
- Overall height: 2.5 m

Empennage
- Stabilator span: 2.9 m
- Vertical tail span: 1.2 m

Landing Gear
- Wheel track: 1.8 m
- Wheel base: 1.6 m
- Main gear tire. Air Trac: 5.00-5
- Wheel hub and brake Marc Ingegno
- Nose gear tire Sava: 4.00-6

Control Surfaces Travel Limits
- Ailerons: Up 20° down 15° ± 2°
- Stabilator: Up 18° down 3° ± 1°
- Trim-Tab: +2° +12° ± 1°
- Rudder: RS 25° LS 25° ± 1°
- Flaps: 0° - 35° ± 1°
Engine

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Bombardier-Rotax GmbH</th>
<th>Bombardier-Rotax GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>912 UL</td>
<td>912 S</td>
</tr>
<tr>
<td>Maximum power:</td>
<td>81Hp (59.6 kW) at 5800 rpm - max 5 min.</td>
<td>100 Hp (73.5 kW) at 5800 rpm - max 5 min.</td>
</tr>
</tbody>
</table>

Propeller

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>F.lli Tonini Giancarlo & Felice S.n.c.</th>
<th>F.lli Tonini Giancarlo & Felice S.n.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>GT- ECHO 2/166/145</td>
<td>GT- ECHO 2/172/164</td>
</tr>
<tr>
<td>Number of blades:</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Diameter:</td>
<td>1660 mm</td>
<td>1720 mm</td>
</tr>
<tr>
<td>Type:</td>
<td>Fixed pitch - wood</td>
<td>Fixed pitch - wood</td>
</tr>
</tbody>
</table>
Fuel (P92 Echo & P92 Echo/100)

Fuel grade:
- High octane gasoline DIN 51600, O-NORM 1103 (red)
- Unleaded gasoline DIN 51603, O-NORM 1101
- AVGAS 100LL

Fuel tanks:
2 wing tanks integrated within the wing's leading edge with drainage reservoir located in engine cowling

Capacity of each wing tank: 35 liters
Total capacity: 70 liters

Oil (P92 Echo & P92 Echo/100)

Oil system: Forced, with external oil reservoir

Oil: Automotive grade type oil type API "SF" or "SG" preferably synthetic or semi-synthetic

Oil Capacity: 2.5 liters

Cooling (P92 Echo & P92 Echo/100)

Cooling system: Mixed air and liquid pressurized closed circuit system

Coolant: Antifreeze and water liquid mixture

Capacity: 3 liters
Weights (P92 Echo & P92 Echo/100)

- Maximum takeoff: 450 kg
- Standard empty weight: 280 kg

Specific Loadings

<table>
<thead>
<tr>
<th></th>
<th>P92 Echo</th>
<th>P92 Echo 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing Loading</td>
<td>34.1 kg/m²</td>
<td>34.1 kg/m²</td>
</tr>
<tr>
<td>Power Loading</td>
<td>5.5 kg/hp</td>
<td>4.5 kg/hp</td>
</tr>
</tbody>
</table>
Abbreviations and Terminology

Airspeed Terminology and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>Calibrated Airspeed: is indicated airspeed corrected for position and instrument error.</td>
</tr>
<tr>
<td>IAS</td>
<td>Indicated Airspeed: is the speed shown on the on-board airspeed indicator.</td>
</tr>
<tr>
<td>TAS</td>
<td>True Airspeed: is calibrated airspeed corrected for altitude and temperature.</td>
</tr>
<tr>
<td>V_{FE}</td>
<td>Maximum Flap Extended Speed: is the highest speed permissible with wing flaps in a prescribed extended position.</td>
</tr>
<tr>
<td>V_{NO}</td>
<td>Maximum Structural Cruising Speed: is the speed that should not be exceeded except in smooth air, then only with caution.</td>
</tr>
<tr>
<td>V_{NE}</td>
<td>Never Exceed Speed: is the speed limit that may not be exceeded at any time.</td>
</tr>
<tr>
<td>V_S</td>
<td>Stalling Speed.</td>
</tr>
<tr>
<td>V_{SO}</td>
<td>Stalling Speed or the minimum steady flight speed: at which the airplane is controllable in the landing configuration at the most forward center of gravity.</td>
</tr>
<tr>
<td>V_X</td>
<td>Best Angle-of-Climb Speed: is the speed which results in the greatest gain of altitude in a given horizontal distance.</td>
</tr>
<tr>
<td>V_Y</td>
<td>Best Rate-of-Climb Speed: is the speed which results in the greatest gain in altitude in a given time.</td>
</tr>
<tr>
<td>Vr</td>
<td>Rotation speed: is the speed at which the aircraft rotates about the pitch axis during takeoff.</td>
</tr>
<tr>
<td>V_{obs}</td>
<td>Obstacle speed: is the speed at which the aircraft flies over a 15m obstacle during takeoff or landing.</td>
</tr>
</tbody>
</table>
Meteorological Terminology

OAT Outside Air Temperature is the free air static temperature expressed in degrees Celsius (°C).

T_s Standard Temperature is 15°C at sea level pressure altitude and decreased by 2°C for each 1000 ft of altitude.

H_p Pressure Altitude is the altitude read from an altimeter when the barometric subscale has been set to 1013 mb.

Engine Power Terminology

RPM Revolutions Per Minute: is the number of revolutions per minute of the propeller, multiplied by 2.273 (912UL) or 2.4286 (912S) yields engine RPM.

Airplane Performance And Flight Planning Terminology

Crosswind Velocity is the velocity of the crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated.

Usable fuel is the fuel available for flight planning.

Unusable fuel is the quantity of fuel that cannot be safely used in flight.

G is the acceleration of gravity.

TOR is the takeoff distance measured from actual start to wheel liftoff point

TOD is total takeoff distance measured from start to 15m obstacle clearing

GR is the distance measured during landing from actual touchdown to stop point

LD is the distance measured during landing, from 15m obstacle clearing to actual stop.

S/R is specific range, that is, the distance (in nautical miles) which can be expected at a specific power setting and/or flight configuration per kilo of fuel consumed

October '98 1-12
Weight And Balance Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>is an imaginary vertical plane from which all horizontal distances are measured for balance purposes.</td>
</tr>
<tr>
<td>Arm</td>
<td>is the horizontal distance from the reference datum to the center of gravity (C. G.) of an item.</td>
</tr>
<tr>
<td>Moment</td>
<td>is the product of the weight of an item multiplied by its arm.</td>
</tr>
<tr>
<td>C. G.</td>
<td>Center of Gravity is the point at which the airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.</td>
</tr>
<tr>
<td>Standard Empty Weight</td>
<td>is the weight of a standard airplane, including unusable fuel, full operating fuels and full engine oil.</td>
</tr>
<tr>
<td>Basic Empty Weight</td>
<td>is the standard empty weight plus the weight of optional equipment.</td>
</tr>
<tr>
<td>Useful Load</td>
<td>is the difference between takeoff weight and the basic empty weight.</td>
</tr>
<tr>
<td>Maximum Weight</td>
<td>is the maximum weight of the aircraft.</td>
</tr>
<tr>
<td>Maximum Takeoff Weight</td>
<td>is the maximum weight approved for the start of the takeoff run.</td>
</tr>
<tr>
<td>Maximum Landing Weight</td>
<td>is the maximum weight approved for the landing touch down.</td>
</tr>
<tr>
<td>Tare</td>
<td>is the weight of chocks, blocks, stands, etc. used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to obtain the actual (net) airplane weight.</td>
</tr>
</tbody>
</table>
Unit Conversion Factors

<table>
<thead>
<tr>
<th></th>
<th>Multiplying</th>
<th>By</th>
<th>Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrenheit</td>
<td>(\frac{5}{9}(F - 32))</td>
<td>Celsius</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Celsius</td>
<td>(\frac{9}{5}C + 32)</td>
<td>Fahrenheit</td>
<td>(^\circ F)</td>
</tr>
<tr>
<td>Weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilograms</td>
<td>2.205</td>
<td>Pounds</td>
<td>[Lb]</td>
</tr>
<tr>
<td>Pounds</td>
<td>0.4536</td>
<td>Kilograms</td>
<td>[Kg]</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meters per second</td>
<td>196.86</td>
<td>Feet per minute.</td>
<td>[ft/min]</td>
</tr>
<tr>
<td>Feet per minute</td>
<td>0.00508</td>
<td>Meters per second.</td>
<td>[m/s]</td>
</tr>
<tr>
<td>Knots</td>
<td>1.852</td>
<td>Kilometers / hour</td>
<td>[Km/h]</td>
</tr>
<tr>
<td>Kilometers / hour</td>
<td>0.540</td>
<td>Knots</td>
<td>[Kts]</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmosphere</td>
<td>29.921</td>
<td>Pounds / sq. in</td>
<td>[psi]</td>
</tr>
<tr>
<td>Pounds / sq. in</td>
<td>0.0334</td>
<td>Atmosphere</td>
<td>[Atm]</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilometers</td>
<td>0.540</td>
<td>Nautical miles</td>
<td>[nm]</td>
</tr>
<tr>
<td>Nautical miles</td>
<td>1.852</td>
<td>Kilometers</td>
<td>[km]</td>
</tr>
<tr>
<td>Meters</td>
<td>3.281</td>
<td>Feet</td>
<td>[ft]</td>
</tr>
<tr>
<td>Feet</td>
<td>0.3048</td>
<td>Meters</td>
<td>[m]</td>
</tr>
<tr>
<td>Centimeters</td>
<td>0.3937</td>
<td>Inches</td>
<td>[in]</td>
</tr>
<tr>
<td>Inches</td>
<td>2.540</td>
<td>Centimeters</td>
<td>[cm]</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liters</td>
<td>0.2642</td>
<td>Gallons US</td>
<td>[US gl]</td>
</tr>
<tr>
<td>Gallons US</td>
<td>3.785</td>
<td>Liters</td>
<td>[lt]</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square meters</td>
<td>10.76</td>
<td>Square feet</td>
<td>[sq ft]</td>
</tr>
<tr>
<td>Square feet</td>
<td>0.0929</td>
<td>Square meters</td>
<td>[m²]</td>
</tr>
</tbody>
</table>

October '98 1-14
Section 2
Limitations

Table Of Contents

INTRODUCTION 16
AIRSPEED LIMITATIONS 16
AIRSPEED INDICATOR MARKINGS 17
POWERPLANT LIMITATIONS 18
PROPELLER 19
POWERPLANT INSTRUMENT MARKINGS 20
OTHER INSTRUMENT MARKINGS 21
WEIGHT LIMITS 21
CENTER OF GRAVITY LIMITS 21
APPROVED MANEUVERS 21
FUEL 22
Introduction
Section 2 includes operating limitations, instrument markings, and basic placards necessary for safe operation of the P92 Echo, its engine, standard systems and standard equipment.

Airspeed Limitations

For all models

<table>
<thead>
<tr>
<th>SPEED</th>
<th>IAS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{NE})</td>
<td>260</td>
<td>Never exceed this speed in any operation.</td>
</tr>
<tr>
<td>(V_{NO})</td>
<td>200</td>
<td>Never exceed this speed unless in smooth air, and then only with caution.</td>
</tr>
<tr>
<td>(V_A)</td>
<td>150</td>
<td>Do not make full or abrupt control movements above this speed as this may cause stress in excess of limit load factor</td>
</tr>
<tr>
<td>(V_{FE})</td>
<td>110</td>
<td>Never exceed this speed for any given flap setting.</td>
</tr>
</tbody>
</table>
Airspeed Indicator Markings

Airspeed indicator markings and their color code are explained in the following table:

For all models

<table>
<thead>
<tr>
<th>Marking</th>
<th>IAS km/h</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>White arc</td>
<td>71 – 110</td>
<td>Flap Operating Range (lower limit is V_{SO} at maximum weight and upper limit is maximum speed permissible with flaps extended at 35°)</td>
</tr>
<tr>
<td>Green arc</td>
<td>110 – 200</td>
<td>Normal Operating Range (lower limit is V_{S1} at maximum weight and flaps at 0° and upper limit is maximum structural speed V_{NO}).</td>
</tr>
<tr>
<td>Yellow arc</td>
<td>200 – 260</td>
<td>Operations must be conducted with caution and only in smooth air.</td>
</tr>
<tr>
<td>Red line</td>
<td>260</td>
<td>Maximum speed for all operations.</td>
</tr>
</tbody>
</table>
Powerplant Limitations

The following table lists operating limitations for aircraft installed engine:

Engine Manufacturer: Bombardier Rotax Gmbh.

Engine Model: **912 UL / 912 S**

Maximum Power:

<table>
<thead>
<tr>
<th>Max Power (HP)</th>
<th>Max RPM</th>
<th>Max time (minuti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>912UL 912 S</td>
<td>912UL 912 S</td>
<td>912UL 912 S</td>
</tr>
<tr>
<td>Takeoff</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>Max continuous</td>
<td>79</td>
<td>94</td>
</tr>
</tbody>
</table>

Temperatures:

<table>
<thead>
<tr>
<th></th>
<th>912UL</th>
<th>912 S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant, monitored at cylinder heads</td>
<td>150°C</td>
<td>135°C</td>
</tr>
<tr>
<td>Maximum Oil:</td>
<td>140°C</td>
<td>130°C</td>
</tr>
<tr>
<td>Minimum Oil</td>
<td>50°C</td>
<td>50°C</td>
</tr>
</tbody>
</table>

Oil Pressure:

<table>
<thead>
<tr>
<th></th>
<th>912UL</th>
<th>912 S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>1.5 bar</td>
<td>1.5 bar</td>
</tr>
<tr>
<td>Maximum</td>
<td>5 bar</td>
<td>5 bar</td>
</tr>
</tbody>
</table>

Caution

Admissible pressure for cold start is 7 bar maximum for short periods.

Viscosity

Use viscosity grade oil as specified in the following table:

CAUTION

Use of Aviation Grade Oil with or without additives is not permitted

Coolant:

Mixture: 80% concentrated antifreeze (e.g. Fiat Parafiu) with anticorrosion additive and 20% demineralized water.

Propeller

<table>
<thead>
<tr>
<th></th>
<th>P92 Echo</th>
<th>P92 Echo/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUFACTURER:</td>
<td>F.lli Tonini Giancarlo & Felice</td>
<td>F.lli Tonini Giancarlo & Felice</td>
</tr>
<tr>
<td>MODEL:</td>
<td>GT-ECHO 2/166/145</td>
<td>GT-ECHO 2/172/164</td>
</tr>
<tr>
<td>PROP. TYPE:</td>
<td>Wood twin blade fixed pitch</td>
<td>Wood twin blade fixed pitch</td>
</tr>
<tr>
<td>DIAMETER:</td>
<td>1660 mm</td>
<td>1720 mm</td>
</tr>
</tbody>
</table>

October '98 2-19
Powerplant Instrument Markings

Powerplant instrument markings and their color code significance are shown below:

P92 Echo

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Red Line Minimum Limit</th>
<th>Green Arc Normal Operating</th>
<th>Yellow Arc Caution</th>
<th>Red Line Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop tach</td>
<td>RPM</td>
<td>2160-5500</td>
<td>5500-5800</td>
<td>5800</td>
</tr>
<tr>
<td>Oil Temp.</td>
<td>°C</td>
<td>50</td>
<td>90-110</td>
<td>140</td>
</tr>
<tr>
<td>Cylinder heads and coolant temp.</td>
<td>°C</td>
<td>0 - 150</td>
<td>110-140</td>
<td>150</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>bar</td>
<td>1.5</td>
<td>1.5 - 5</td>
<td>7</td>
</tr>
<tr>
<td>Fuel gage</td>
<td>liter</td>
<td>0-5</td>
<td>5 - 7</td>
<td>7</td>
</tr>
</tbody>
</table>

P92 Echo/100

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Red Line Minimum Limit</th>
<th>Green Arc Normal Operating</th>
<th>Yellow Arc Caution</th>
<th>Red Line Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop tach</td>
<td>RPM</td>
<td>2160-5500</td>
<td>5500-5800</td>
<td>5800</td>
</tr>
<tr>
<td>Oil Temp.</td>
<td>°C</td>
<td>50</td>
<td>90-100</td>
<td>130</td>
</tr>
<tr>
<td>Cylinder heads and coolant temp.</td>
<td>°C</td>
<td>0 - 135</td>
<td>100-130</td>
<td>135</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>bar</td>
<td>1.5</td>
<td>1.5 - 5</td>
<td>7</td>
</tr>
<tr>
<td>Fuel gage</td>
<td>liter</td>
<td>0-5</td>
<td>5 - 7</td>
<td>7</td>
</tr>
</tbody>
</table>
Note
The table below is valid for both P92 models.

Other Instrument Markings

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>RED LINE</th>
<th>GREEN ARC</th>
<th>YELLOW ARC</th>
<th>RED LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltmeter</td>
<td>10 Volt</td>
<td>12 - 14 Volt</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Weight Limits
Maximum takeoff weight: 450 kg

Center Of Gravity Limits

Forward limit 23% MAC
Aft limit 26% MAC
Datum Propeller support flange w/o spacer
Bubble Level Cabin floor

It is the pilot's responsibility to insure that airplane is properly loaded.

Approved Maneuvers
This aircraft is è intended for non-aerobatic operation only. Non-aerobatic operation includes:

- Any maneuver pertaining to “normal” flight
- Stalls (except whip stalls)
- Lazy eights
- Chandelles
- Turns in which the angle of bank is not more than 60°

Acrobatic maneuvers, including spins, are not approved.
Fuel

Two tanks: 35 liters each. Total fuel capacity: 70 liters
Optional: Two tanks, 45 l each, total 90 l.

Approved Fuel

* High octane gasoline DIN 51600, O.NORM 1103
* Unleaded gasoline DIN 51603, O.NORM 1101
* Avgas 100LL
Section 3

Emergency Procedures

Table of Contents

Introduction 24
ENGINE Failure 24
FORCED LANDING 25
SMOKE AND FIRE 25
RECOVERY FROM UNINTENTIONAL SPIN 26
deployment of emergency parachute (OPTIONAL EQUIPMENT) 27
Introduction

Section 3 includes checklists and detailed procedures to be used in the event of emergencies. Emergencies caused by a malfunction of the aircraft or engine are extremely rare if appropriate maintenance and pre-flight inspections are carried out.

In case of emergency, suggestions presented in this section should be considered and applied as necessary to correct the problem.

Before operating the aircraft, the pilot should become thoroughly familiar with the present manual and, in particular, with the present section. Further, a continued and appropriate training should be provided.

Engine Failure

Depending on the case that may apply, the emergency procedure should follow the guidelines listed below.

Engine failure during takeoff run

1. Throttle: *idle* (fully out)
2. Brakes: *apply as needed*
3. Magnetos: *OFF*
4. Flaps: *extend*
5. Master switch: *OFF*
6. Fuel shutoff valves: *OFF*

Engine Failure Immediately After Takeoff

1. Locate landing area
2. Throttle: *idle* (fully out)
3. Fuel shutoff valves: *OFF*
4. Magnetos *OFF*
5. Flaps: *as needed*
6. Master switch: *OFF*
7. Land with wings level
Forced Landing

Emergency Landing Without Engine Power

1. Set glide speed to optimal value of 110 Km/h
2. Select terrain area most suitable for emergency landing, possibly upwind
3. Fuel shutoff valves: OFF
4. Magneto: OFF
5. Tighten safety belts, release door safety lock and unlatch doors
6. Flaps: as needed
7. When ready to land, Master switch: OFF

Power-On Forced Landing

1. Adjust descent slope
2. Extend flaps as needed
3. Select terrain area most suitable for emergency landing and flyby checking for obstacles and wind direction
4. Tighten safety belts, release door safety lock and unlatch doors
5. Before touchdown: fuel shutoff valves OFF
6. Flaps: extended
7. After touchdown: Magneto: OFF, Master switch: OFF

Smoke And Fire

Engine Fire While Parked Or During Takeoff

1. Fuel shutoff valves: OFF
2. Abort takeoff if possible
3. If engine is running let it use up remaining fuel in carburetors
4. Magneto and Master switch: OFF
5. Warn bystanders to clear the area as fast as possible
6. Without removing the engine cowling use a CO₂ or a powder fire extinguisher to put out flames directing spray towards cowling's air intakes
Note

DO NOT USE WATER to put out fire and do not open engine cowling until absolutely certain fire is extinguished. In case an appropriate fire extinguisher is not handy, still keeping engine cowling closed, it is possible to use a woolen blanket, sand or dirt to try smothering the fire.

Engine Compartment Fire In Flight

1. Fuel shutoff valves: **OFF**
2. Throttle: **fully inward**
3. Magnetos: **OFF**
4. Do not try airstarting engine
5. Extend flaps as needed
6. Carry out forced landing emergency procedure
7. Master switch **OFF**

Cabin Fire During Flight

1. Master switch **OFF**
2. Door vents: **open**
3. Extinguish fire with on-board fire extinguisher (if available) directing spray towards flame base
4. Land as soon as possible

Recovery From Unintentional Spin

In case of unintentional spin entry, follow the emergency procedure described below:

1. Adjust throttle to minimum (full outward position)
2. Activate rudder bar by pushing foot opposite spin direction
3. Push control stick full forward and keep in position until spin is halted
4. Center rudder bar
5. Gradually recover flight attitude easing back on the control stick avoiding to exceed V_{NE} and maximum load factor
6. Readjust throttle to restore engine power
Deployment of Emergency Parachute (optional equipment)

Keeping in mind that full deployment of parachute is achieved after two seconds, the following procedure is recommended:

1. Try leveling aircraft as much as possible
2. Minimum altitude for successful deployment is about 33m (100 ft).
3. Pull firing clip firmly and to end-travel
4. Shut off fuel valves, magnetos and master switch
5. Tighten safety belt and helmet chinstrap
6. Release door safety lock and unlatch doors
7. Assume tucked position before touch-down

1 This altitude is only representative, successful deployment depends on aircraft attitude

Chinstrap: Greater deployment altitude yields better chances for successful deployment.
Section 4

Normal Procedures

Table of Contents

INTRODUCTION 29
RIGGING AND DERIGGING ENGINE COWLING 29
PREFLIGHT INSPECTION 30
CHECKLISTS 33
Introduction

Section 4 contains checklists and amplified procedures for the conduct of normal operation.

Rigging and Derigging Engine Cowling

Upper Cowling:
I. Parking brake ON.
II. Fuel shutoff valves OFF.
III. Master switch OFF, Magnetos OFF.
IV. Unlatch all four butterfly Cam-locks mounted on the cowling by rotating them 90° counterclockwise while slightly pushing inwards.
V. Remove engine cowling paying attention to propeller shaft passing through nose.
VI. To assemble: rest cowling horizontal insuring proper fitting of nose base reference pins.
VII. Secure latches by applying light pressure, check for proper assembly and fasten Cam-locks.

WARNING !

Butterfly Cam-locks are locked when tabs are horizontal and open when tabs are vertical. Verify tab is below latch upon closing.

Lower Cowling
I. After disassembling upper cowling, bring propeller to horizontal position.
II. Using a standard screwdriver, press and rotate 90° the two Cam-locks positioned on lower cowling by the firewall.
III. Disconnect landing light wire
IV. Pull out the first hinge pin positioned on the side of the firewall, then, while holding cowling, pull out second hinge pin; remove cowling with downward motion.
V. For installation follow reverse procedure.
Preflight Inspection

Before each flight, it is necessary to carry out a complete inspection of the aircraft as hereby detailed.

Cabin Inspection

A Weight and balance: check if within limits
B Safety belts used to lock controls: free
C Flight controls: activate flight controls to insure unhindered movement of control rods and surfaces.
D Parking brake: engage
E Master switch: ON
F Check generator switch is illuminated and ammeter is operational.
G Flaps control: activate control to full extension checking end travel and instrument indication.
H Trim control: activate control to full scale checking end travel and instrument indication
I Master switch: OFF
J Fuel level: check level on the basis of flight plan

External Inspection

To carry out the external inspection it will be necessary to follow the checklist below with the station order outlined in fig. 4-1

A Left side tank cap: Check proper fastening.
B Left fuel tank blow-out plug: check for obstructions
C Remove protection cap and check pitot is unobstructed, do not blow inside vents, place protection cap inside aircraft.
D Leading edge and wing skin: check integrity
E Left aileron: check integrity and unhindered movement
F Left flap and hinges: check integrity
G Check integrity of left side main landing gear, tire inflation (1.4 bar), condition and alignment; check fuselage skin condition.
H Horizontal tail and tab: check integrity and unhindered movement.
I Vertical tail and rudder: check integrity and unhindered movement.
L Check integrity of right side main landing gear, tire pressure (1.4 bar), condition and alignment; check fuselage skin condition.
M Right flap and hinges: check integrity.
N Right aileron: check integrity and unhindered movement.
O Leading edge and wing skin: check integrity.
P Check right side tank cap is fastened and blow-out plug is unobstructed.
Q Check right side static vent is unobstructed, do not blow inside vents (read note).
R Check integrity of nose landing gear strut, tire inflation (1.0 bar) and condition; check condition of rubber shock absorbers.
S Propeller and spinner condition: check for nicks and fastening.
T Open engine cowling and perform the following checklist:
 I. Check no foreign objects are present.
 II. Check the cooling circuit for losses from tubing, check coolant reservoir level, insure radiator honeycomb cooling fins are unobstructed.
 III. Check lubrication circuit for losses from tubing, check oil reservoir level, insure radiator honeycomb cooling fins are unobstructed.
 IV. Open both fuel taps, inspect fuel circuit for losses from tubing, check integrity of fireproof protection braids, drain circuit using a container to collect fuel activating the specific drainage tap located on the firewall, shut fuel taps. Check for absence of water or other contaminants.
 WARNING! Drainage operation must be carried out with aircraft parked on level surface.
 V. Check integrity of silent-blocks.
 VI. Check firmness and integrity of air intake system, check externally that ram air intake is unobstructed.
 VII. Check that all parts are secure or safetied.
U Close engine cowling.
V Check left side static port is unobstructed.

October '98 4-31
Z Remove tow bar and chocks

NOTE

Avoid blowing inside left strut mounted pitot and inside airspeed indicator system's static vents as this may damage instruments.

FIG. 4-1
Checklists

Before Starting Engine (after preflight inspection)
I. Flight planning, fuel consumption, refueling.
II. Aircraft loading and related inspections (see section 6)
III. Seat and safety belts adjustment
IV. Doors secured
V. Parking brake ON.

Starting Engine
I. Master switch ON.
II. Both fuel taps ON.
III. Engine throttle to idle.
IV. Choke as needed.
V. Magneto switch to ON.
VI. Prop area: free
VII. Ignition key set to: START.
VIII. Prop RPM: 2400 - 2600 RPM
IX. Choke OFF
X. Check engine instruments
XI. Check oil pressure rise (maximum value cold 7 bar)

Before Taxing
I. Radio and utilities ON.
II. Altimeter: reset.
III. Navigation lights: as required

Taxing
I. Brakes: check operation
II. Flight instruments: check operation
Holding

I. Parking brake ON.
II. Turn on navigation lights, strobe light, and landing light (optional equipment)
III. Check engine parameters.

<table>
<thead>
<tr>
<th></th>
<th>912UL</th>
<th>912 S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil temperature</td>
<td>50° - 110°</td>
<td>50° - 100°</td>
</tr>
<tr>
<td>Cylinder heads temperature</td>
<td>150°</td>
<td>135°</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>1.5 - 7</td>
<td>1.5 - 7</td>
</tr>
</tbody>
</table>

IV. Check ammeter to insure alternator is charging.
V. Prop rpm's at 3800 RPM and test magnetos.
VI. Visual check of fuel indicators.
VII. Flaps at 15° (takeoff)
VIII. Stick free and zero trim
IX. Seat belts fastened and doors secured.

Takeoff And Climb

I. Control Tower for takeoff
II. Check for clear final and wind on runway.
III. Parking brake OFF, full throttle.
IV. Carburetor heat: OFF
V. Taxi to line-up
VI. Rotation and takeoff
VII. Slight braking to stop wheel spinning.
VIII. Flaps retracted
IX. Landing light OFF.
X. Trim adjustment
XI. Establish climb rate
Cruise

I. Reach cruising altitude

II. Set power and engine rpm's for cruise.

III. Check engine parameters

<table>
<thead>
<tr>
<th></th>
<th>912UL</th>
<th>912 S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil temperature</td>
<td>90°-110°</td>
<td>90°-100°</td>
</tr>
<tr>
<td>Temperature cylinder heads</td>
<td>90°-150</td>
<td>90°-135°</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>1.5 - 5</td>
<td>1.5 - 5</td>
</tr>
</tbody>
</table>

IV. Carburetor heat as needed, see paragraph on carb heat in Section 3.

NOTE

Compensate unpredicted asymmetrical fuel consumption between left and right fuel tanks by shutting off appropriate fuel tap located inside cabin

Landing

I. Turn on landing light (if installed)

II. Check runway final and establish descent and approach to final.

III. Extend flaps gradually to maximum deflection of 35°.

IV. Optimal touchdown speed 70 Km/h

V. Land and taxi.

VI. Flaps to 0°.

VII. Parking brake ON.

VIII. Turn off landing light, navigation lights and strobe light.

Engine Shut Down

I. Keep engine running at 3000 RPM for about two minutes in order to reduce latent heat.

II. Turn off all electrical utilities

III. Set magnetos switch and Master switch to OFF

IV. Set both fuel taps to OFF.

V. Insert hood over pitot tube on left side wing strut.

October '98
Section 5
Performance

Table of Contents

INTRODUCTION .. 37
AIRSPEED CALIBRATION ... 38
STALL SPEEDS ... 38
CROSSWIND .. 39
TAKEOFF PERFORMANCE .. 40
LANDING ... 41
CLimb PERFORMANCE ... 42
CRUISE ... 43
CONSEQUENCES FROM RAIN AND INSECT 43
Introduction

This section provides all necessary data for accurate and comprehensive planning of flight activity from takeoff to landing.

Data reported in graphs and/or tables were determined using:

- aircraft and engine in good condition
- average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - m.s.l.); evaluations of the impact on performance was carried out by theoretical means for:

- airspeed
- external temperature
- altitude
- weight
Airspeed Calibration

The difference between indicated airspeed and calibrated airspeed is within JAR-VLA limits of ±3% for all speeds above 1.3 Vs.

Stall Speeds

CONDITIONS:
- weight 450 kg
- engine idle
- no ground effect

Note
The table below is valid for both P92 Echo and P92 Echo/100.

<table>
<thead>
<tr>
<th>Lateral Banking</th>
<th>0° IAS km/h</th>
<th>30° IAS km/h</th>
<th>45° IAS km/h</th>
<th>60° IAS km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0° Flaps</td>
<td>74</td>
<td>78</td>
<td>84</td>
<td>101</td>
</tr>
<tr>
<td>15° Flaps</td>
<td>69</td>
<td>76</td>
<td>79</td>
<td>97</td>
</tr>
<tr>
<td>35° Flaps</td>
<td>64</td>
<td>69</td>
<td>76</td>
<td>91</td>
</tr>
</tbody>
</table>

October ‘98
Rev. May, 2002
5-38
Crosswind

Maximum demonstrated crosswind velocity is 15 Kts

⇒ Example:

Given
- Wind direction = 30°
- Wind velocity = 20 Kts

Find
- Headwind = 17.5 Kts
- Crosswind = 10 Kts

Fig. 5-1 CROSSWIND CHART
Takeoff Performance

Takeoff Distance

Conditions:
- ISA
- Engine: full throttle
- Flaps: 15°
- Runway: dry, compact, grass
- Slope: 0°
- Wind: zero

![Graph showing Takeoff Performance](image)

Fig. 5-2 TAKEOFF
Landing

Ground Roll Distance And Landing Distance (P92 Echo & P92 Echo/100)

Conditions:
- Flaps: 35°
- Engine: throttle idle
- Runway: dry, compact, grass
- Slope: 0°
- Wind: zero

Distance over a 15 m obstacle

The graph below is valid for both P92 Echo and P92 Echo/100

![Graph showing ground roll distance and landing distance against weight](image)

Fig. 5-3 LANDING
Climb Performance

Climb Rate In Clean Configuration

Conditions:
- ISA
- Flaps: 0°
- Weight 450 kg
- Engine: full throttle

![Graph of Climb Rate vs Altitude](image)

Fig. 5-4 CLIMB RATE

- **P92 Echo** ➔ \(V_Y = 120 \) km/h
- **P92 Echo/100** ➔ \(V_Y = 120 \) km/h

NOTE
- For each 10 kg weight increase, \(R/C \) decreases by 0.15 m/sec (30 ft/min).
- For each 10 kg weight decrease, \(R/C \) increases by 0.15 m/sec (30 ft/min).
Cruise

Conditions:
- ISA
- Altitude: 0
- Wind: 0

P92 Echo

<table>
<thead>
<tr>
<th>RPM</th>
<th>CAS km/h</th>
<th>Hourly consumption [lt/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4300</td>
<td>155</td>
<td>13</td>
</tr>
<tr>
<td>4800</td>
<td>170</td>
<td>14</td>
</tr>
<tr>
<td>5000</td>
<td>180</td>
<td>16</td>
</tr>
</tbody>
</table>

P92 Echo/100

<table>
<thead>
<tr>
<th>RPM</th>
<th>CAS km/h</th>
<th>Hourly consumption [lt/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4300</td>
<td>165</td>
<td>14</td>
</tr>
<tr>
<td>4800</td>
<td>180</td>
<td>18</td>
</tr>
<tr>
<td>5000</td>
<td>196</td>
<td>20</td>
</tr>
</tbody>
</table>

Consequences From Rain And Insect

Flight tests have demonstrated that neither rain nor insect impact build-up on leading edge has caused substantial variations on aircraft's flight qualities.
Section 6

Weight & Balance

Table of Contents

INTRODUCTION 45
aircraft weighing procedures 45
weighing report 46
C. G. TRAVEL 47
Introduction

This section describes the procedure for establishing the basic empty weight and moment of the aircraft. Loading procedure information is also provided.

Aircraft Weighing Procedures

Preparation

a. Carry out weighing procedure inside closed hangar
b. Remove from cabin all objects left unintentionally
c. Align nose wheel
d. Drain fuel using draining reservoir
e. Oil, hydraulic fluid and coolant to operating levels
f. Position seats to most forward position
g. Flaps retracted (0°)
h. Control surfaces in neutral position
i. Place scales (min. capacity 150 kg) under each wheel

Leveling

a. Level the aircraft using cabin floor as datum
b. Center bubble on level by deflating nose tire

Weighing

a. Record weight shown on each scale
b. Repeat weighing procedure three times
c. Calculate empty weight

Determination of C.G. location

a. Drop a plumb bob tangent to the leading edge (in non-tapered area of one half-wing, approximately one meter from wing root) and trace reference mark on the floor.
b. Repeat operation for other half-wing.
c. Stretch a taught line between the two marks
d. Measure the distance between the reference line and main wheel axis
e. Using recorded data it is possible to determine the aircraft's C.G. location and moment (see following table)
Weighing Report

Model P92 Echo & P92 Echo/100

s/n: ___ Weighing n° ___ Date: ________

Datum: Propeller support flange without spacer

<table>
<thead>
<tr>
<th>Kg</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose wheel weight (W_1 =)</td>
<td>Plumb bob distance from LS wheel (A_L =)</td>
</tr>
<tr>
<td>LS wheel weight (W_L =)</td>
<td>Plumb bob distance from RS wheel (A_R =)</td>
</tr>
<tr>
<td>RS wheel weight (W_R =)</td>
<td>Average distance ((A_L + A_R)/2) (A =)</td>
</tr>
<tr>
<td>(W_2 = W_1 + W_R =)</td>
<td>Bob distance from nose wheel. (B =)</td>
</tr>
</tbody>
</table>

Empty weight \(W_e = W_1 + W_2 = \)

\[
D = \frac{W_1 \cdot A - W_2 \cdot B}{W_e} = m \quad D\% = \frac{D}{14} \cdot 100 =
\]

Empty weight moment: \(M = [(D+1.39) W_e] = Kg \cdot m \)

Maximum takeoff weight \(W_T = \)	450 kg
Empty weight \(W_e = \)	
Maximum useful load \(W_T - W_e \)	\(W_u = \)

October '98

6-46
C. G. Travel

Maximum admissible C.G. travel exceeds actual operational limits. Moreover, occupants and fuel impact only marginally on CG travel.

When on flat terrain, exceeding CG travel aft limit will cause aircraft tail to lower.
Section 7

Airplane and System Descriptions

Table of Contents

INTRODUCTION 49
AIRFRAME 2
FLIGHT CONTROLS 49
INSTRUMENT PANEL 50
SEATS AND SAFETY HARNESS 51
DOORS 51
BAGGAGE COMPARTMENT 51
ENGINE 52
FUEL SYSTEM 52
ELECTRICAL SYSTEM 52
AIRSPEED INDICATOR SYSTEM 53
BRAKES 53
Introduction

This section provides description and operation of the aircraft and its systems.

Airframe

Wing

The wing is made up of a central light alloy torque box; a composite leading edge is attached to the front spar and geometrically similar flap and aileron are hinged to rear. Flaps and ailerons are both made up of an aluminum spar connected to formed sheet metal leading edge and ribs and are covered by a thermoretractible synthetic material.

Fuselage

The front part of the fuselage is made up of a truss structure with special steel tubing and, beginning at the cabin's rear section, by an aluminum alloy semi-monocoque structure. The engine housing is isolated from the cabin by a stainless steel firewall; the steel stringers engine mount is attached to the cabin's truss structure in four points.

Empennage

The vertical tail is entirely metal: the vertical stabilizer is made up of a twin spar with load carrying skin while the rudder consists of an aluminum torque stringer connected to light alloy ribs and skin. The horizontal tail is an all-moving type (stabilator); its structure consists of an aluminum tubular spar connected to ribs and leading edge; the entire structure is covered with thermoretractible synthetic material.

Flight Controls

Aircraft flight controls consist of aileron, rudder and stabilator control surfaces. The control surfaces are manually operated using a control stick for ailerons and stabilator and rudder pedals for the rudder; longitudinal control acts through a system of push-rods and is equipped with a trim tab. Aileron control is of mixed type with push-rods and cables; the cable control circuit is confined within the cabin and is connected to a pair of push-rods positioned in the wings that control ailerons differentially. Aileron trimming is carried out on ground through a small tab positioned on left aileron.
Flaps are extended via an electric servo actuator controlled by a switch on the dashboard. Flaps act in continuous mode, an LED indicator shows surface position. Two lighted LEDs indicate takeoff position (15°). The electric circuit is protected by a breaker positioned on the right side of the dashboard. Longitudinal trim is performed by a small tab positioned on the stabilator and controlled via an electric servoactuator by pushing an Up/Down push-button located on the control stick or on the dashboard.

Instrument Panel

The instrument panel is of conventional type, allowing space for a broad range of equipment. Instruments marked with an asterisk (*) are optional.

(+)=OPTIONAL

![Figure 7-1. INSTRUMENT PANEL](image-url)
Throttle Friction Lock

It is possible to adjust the engine's throttle friction by tightening appropriately the friction lock located on the dashboard near center throttle control.

Seats and Safety Harness

Aircraft features three point fitting safety belts with waist and diagonal straps adjustable via a sliding metal buckle.

Seats on the P92 can be of two types:
- Standard seats are fiberglass with easily removable cushions. Seats may be adjusted on ground by operating on the latch mechanism located below seating cushion.
- Optional seats (type J) are built with light alloy tube structure and synthetic material cushioning. A lever located on the right lower side of each seat allows adjustment of seat position according to pilot size.

Doors

Doors available on the P92 can be of two types:
- Standard doors feature a light alloy tubular frame supporting a transparent or tinted panel. An internal safety latch mechanism is positioned in proximity of door's upper edge and must be used before flight to secure door. Mechanism rotates to engage door frame to cabin tubular framework.
- Optional doors can be equipped with door handles on both sides of doors and left side external door handle equipped with a door lock. An internal safety latch mechanism is positioned in proximity of door's upper edge and must be used before flight to secure door. Mechanism rotates to engage door frame to cabin tubular framework.

Baggage Compartment

The baggage compartment is located behind the pilots' seats. Baggage shall be uniformly distributed on utility shelf.
Engine

- **P92 Echo**
 - ROTAX 912UL, 4 stroke, horizontally-opposed 4 cylinder, mixed air and water cooled, twin electronic ignition, forced lubrication
 - Maximum rating - 81Hp (59.6 kW) at 5800 RPM
 - Reduction gearbox - 2.273:1
 - Prop. GT-ECHO 2/166/145

- **P92 Echo/100**
 - ROTAX 912S, 4 stroke, horizontally-opposed 4 cylinder, mixed air and water cooled, twin electronic ignition, forced lubrication
 - Maximum rating - 100 Hp (73.5 kW) at 5800 g/min
 - Reduction gearbox - 2.4286:1
 - Prop. GT-ECHO 2/172/164

 For further information refer to “Engine Operating Manual”.

Fuel System

The system consists of two composite material fuel tanks that are integral part of the leading edge featuring a viewport to visually monitor fuel level of each tank. Capacity is 35 liters each. Each tank is equipped with cabin installed shut-off valve and of a main filter located on the firewall and equipped with a drainage valve.

Fuel level is detected via a calibrated scale located on fuel tank walls visible from cabin. The fuel system also features a mechanical pump operated by the engine and an emergency non-return valve that allows gravity feed in case of main pump failure.

Electrical System

The aircraft’s electrical system consists of a 12 Volt DC circuit controlled by a Master switch located on dashboard. Electricity is provided by an alternator or by a buffer battery placed in tailcone. Generator light is located on the right side of the instrument panel.
Oil and Cylinder Head Temp. - Oil Pressure

These instruments are connected in series with their respective sensors. Temperature instruments are protected by the same breaker; oil pressure indicator and a second breaker protects other instruments.

Avionics

The central part of the dashboard holds room for avionics equipment. System's manufacturer furnishes features for each system.

Airspeed Indicator System

The aircraft's airspeed indicator system is shown below and consists of two static vents located on both sides of the aircraft forward of cabin and by a pitot tube located on left wing strut.

![Airspeed Indicator System Diagram](image)

FIG. 7-2. AIRSPEED INDICATOR SYSTEM

Brakes

The aircraft's braking system is a single system acting on both wheels of main landing gear through disk brakes, the same circuit acts as parking brake via an intercept valve.

To activate brakes it is sufficient to verify that brake shut-off valve positioned on tunnel between pilots is OFF, then activate brake lever as necessary.

To activate parking brake pull brake lever and set brake shut-valve to ON.
Section 8

Ground Handling And Service

Table of Contents

INTRODUCTION 55

AIRPLANE INSPECTION PERIODS 55

GROUND HANDLING 55

CLEANING AND CARE 56
Introduction

This section contains factory-recommended procedures for proper ground handling and routine care and servicing. It also identifies certain inspection and maintenance requirements which must be followed if the aircraft is to retain its new-plane performance and dependability. It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered locally.

Airplane Inspection Periods

Inspection intervals occur at 50, 100 hours and in accordance with special inspection schedules which are added to regularly scheduled inspections. Correct maintenance procedures are described in the aircraft’s Service Manual or in the engine’s Service Manual.

Ground Handling

Towing

The aircraft is most easily and safely maneuvered by hand by pushing on wing struts near attachments or by pulling it by its propeller near the axle. A tow bar can be fixed onto nose gear fork. Aircraft may be steered by turning rudder or, for steep turns, by pushing lightly on tailcone to lift nose wheel.

Parking And Tie-Down

When parking airplane outdoors, head it into the wind and set the parking brake. If chocks or wedges are available it is preferable to use the latter.

In severe weather and high wind conditions it is wise to tie the airplane down. Tie-down ropes shall be fastened to the wing strut attachments and anchoring shall be provided by ramp tie-downs. Nose gear fork can be used for front tie-down location.

Flight controls shall be secured to avoid possible weathervaning to end travel damage of moving surfaces. For this purpose, seatbelts may be used to latch control stick to prevent its movement.
Jacking

Given the light empty weight, lifting one of the main wheels can easily be accomplished even without the use of hydraulic jacks. It is in fact sufficient that while one person lifts one half-wing by acting on the spar immediately before the wingtip, another person places a suitable stand below the steel spring attachment.

Leveling

Aircraft leveling may become necessary to check wing incidence, dihedral or the exact location of CG. Leveling is obtained when the lower cabin edge and the main gear support beam are horizontal.

Road Transport

It is recommended to secure tightly all aircraft components onto the cart to avoid damage during transport. Minimum cart size are 7x2.5 meters. It is suggested to place wings under the aircraft’s bottom, secured by specific clamps. Secondary components such as stabilizers and struts shall be protected from accidental hits using plastic or other material. For correct rigging and derigging procedure, refer to Service Manual.

Cleaning and Care

To clean painted surfaces, use a mild detergent such as shampoo normally used for car finish; use a soft cloth for drying.

The plastic windshield and windows should never be dusted when dry; use lukewarm soapy water and dry using chamois only. It is possible to use special glass detergents but, in any case, never use products such as gasoline, alcohol, acetone or other solvents.

To clean cabin interior, seats, upholstery and carpet, it is generally recommended to use foam-type detergents.